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H I G H L I G H T S  

• Informed deep learning-based framework is proposed for on-board battery health monitoring. 
• Impedance-related features model battery degradation efficiently. 
• Layer-wise relevance propagation reveals impedance features’ contribution to output. 
• Knowledge infusion to a recurrent neural network improves estimation accuracy. 
• Monte Carlo dropout secures the model reliability by providing uncertainty measures.  
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A B S T R A C T   

This paper proposes a novel, informed deep-learning-based prognostics framework for on-board state of health 
and remaining useful life estimations of lithium-ion batteries, which are critical components for strategizing 
energy and power used in electric vehicles. The framework comprises three phases. First, reliable and online 
accessible impedance-related features are collected from discharge curves. Second, these features are inputted 
into the proposed knowledge-infused recurrent neural network, a hybrid model that combines an empirical 
model with a deep neural network. Third, Monte Carlo dropout, a deep learning method for obtaining a prob
abilistic prediction of a neural network, is addressed to secure robustness in estimating the state of health and 
remaining useful life. Layer-wise relevance propagation, a deep learning technique for tracking the evolution of 
feature importance and offering scientific reasoning of the output, confirms that impedance-related features 
significantly contribute to the estimation accuracy compared to other features investigated in previous studies. 
Moreover, the hybrid model improves the estimation accuracy and robustness, whereas Monte Carlo dropout 
ensures robustness and reliability. Specifically, the estimation results for the public degradation data reveal that 
the proposed model can output significantly more accurate state of health and remaining useful life estimations 
than the baseline deep neural networks. The findings of this study provide insight into the explicable and 
uncertainty-based pipeline of deep neural networks with respect to battery health monitoring, which are highly 
recommendable features for decision-making and corrective planning of power and energy used in lithium-ion 
battery cells and packs.   

1. Introduction 

Lithium-ion batteries have become the most common reversible en
ergy source for electric vehicles, which are increasingly being used on 
the roads, owing to their excellent characteristics, such as high energy, 

high power density, low discharge rate, and long service life. Electric 
vehicles employ several battery packs of which multiple lithium-ion 
battery cells are stacked inside the casings with the battery manage
ment system (BMS). The primary goal of the BMS is the intelligent 
operation of batteries within pre-defined safe limits by the real-time 
monitoring of parameters such as the state of health (SOH) and state 
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of charge (SOC). Precise SOH monitoring is important because the SOH 
indicates the current battery state, which further indicates the number of 
charge–discharge cycles remaining before reaching the end-of-life, 
namely, the remaining useful life (RUL). On-board SOH and RUL esti
mations have been conventionally performed using three types of 
methods [1]: model-based, data-driven, and hybrid. 

Model-based methods include the electrochemical and empirical 
models and the equivalent circuit model (ECM). The electrochemical 
model refers to a single-particle model (SPM) [2,3] or a pseudo-two- 
dimensional model (P2D) [3,4], both of which account for the com
plex nonlinear degradation mechanism of batteries over repeated cycles 
with respect to time. The electrochemical models, particularly P2Ds, 
represent the internal states of batteries and model the transport and 
diffusion of charges and ions [4]. Such a model is described by five 
different governing equations (refer to Appendix A) for charge and mass 
conservation in solid particles, charge and mass conservation in an 
electrolyte, and movement of lithium-ion between a solid particle and 
electrolyte [5]. However, these equations are mostly complex partial 
differential equations that require to be solved with a high computa
tional cost. Thus, P2D is not a suitable candidate for on-board electric 
vehicle applications [6]. In contrast, ECM [7,8] is a simplified model 

aimed at describing the physical and chemical reactions of batteries 
through circuit analysis to reduce the computational load at the expense 
of several complex principles. Despite the limitations, it considers the 
aging mechanism to an extent, including the internal resistance growth. 
Although ECM is one of the most common models for the online esti
mation of the SOC because of its reduced computational cost, it is not 
sufficiently accurate in estimations across a wide range of operating 
conditions encountered in actual scenarios. Moreover, the lack of 
physics-based information related to the system states increases the 
difficulty of estimating the future states, e.g., RUL [6]. The empirical 
model is a battery degradation model that outputs the SOH based on 
given input parameters such as the temperature, charging time, SOC, 
depth of discharge, and the number of cycles. The SOH is generally 
determined theoretically and heuristically after numerous experiments, 
and several common models of this type include the exponential [9–11], 
logarithmic [12], and polynomial [13] models. Empirical models are 
convenient owing to their simplicity. However, their estimation accu
racy using Kalman filter variants [14,15] and particle filter variants 
[16–18] is highly dependent on the fidelity of the model and does not 
provide significant physical insight into the battery state [19]. In gen
eral, accurate SOH estimations based on the aforementioned model- 

Nomenclature 

Abbreviation 
BNN Bayesian neural network 
CCCV Constant current constant voltage 
CDRNN Cumulative damage recurrent neural network 
CDRNN-MC CDRNN-Monte Carlo 
CNN Convolutional neural network 
CT Charge time 
DCNN Deep convolutional neural network 
DNN Deep neural network 
DVS@CC Discharge voltage slope at a constant current 
ECM Equivalent circuit model 
ELBO Evidence lower bound 
FT Fine-tuning 
GPR Gaussian process regression 
HI Health indicator 
IR Internal resistance 
KIRNN Knowledge-infused recurrent neural network 
KIRNN-MC KIRNN-Monte Carlo 
LAM Loss of active material 
LLI Loss of lithium inventory 
LRP Layer-wise relevance propagation 
LSTM Long short-term memory 
MaxE Maximum error 
MAE Mean absolute error 
MAPE Mean absolute percentage error 
MC Monte Carlo 
MLP Multi-layer perceptron 
ODE Ordinary differential equation 
PDE Partial differential equation 
P2D Pseudo-two-dimensional model 
RMSE Root mean squared error 
RMSPE Root mean squared percentage error 
RNN Recurrent neural network 
RUL Remaining useful life 
RVM Relevance vector machine 
SEI Solid electrolyte interphase 
SOC State of charge 
SOH State of health 
SPM Single-particle model 

SVM Support vector machine 
Tmax Maximum temperature 

Symbol 
at Accumulated damage at time t 
N Cycle 
α Unknown coefficients of the double exponential model 
β Unknown coefficients of the double exponential model 
γ Unknown coefficients of the double exponential model 
λ Unknown coefficients of the double exponential model 
QN Accumulated damage at cycle N, Ah 
dQ/dN Damage increment at cycle N, Ah/cycle 
dQKNO Damage output by knowledge-infused block, Ah 
dQDNN Damage output by data-driven block, Ah 
ψ Nonlinear activation function 
W(j) Weight of the j th hidden layer 
z(j) Bias of the j th hidden layer 
MK Linear weighting term of dQKNO 
MD Linear weighting term of dQDNN 
x* Test sample 
y* Test label 
X Training sample 
Y Training label 
w Model weight 
f Model output 
P Number of stochastic forward passes 
p Probability distribution 
μ Mean of model output 
σ Standard deviation of model output 
A Accelerated dataset 
W Weakly-supervised dataset 
T Fully supervised dataset for testing 
x Input hyper-parameter 
x* Optimized parameter 
Λ Pre-defined bounded region 
y*

i Estimated value at the i th test sample 
yi Target value at i th test sample 
p(w|X,Y) Posterior distribution 
q(w) Approximate posterior distribution 
η Weight factor of L2 regularization  
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based approaches require a high computational cost, and there is no 
physics-based model for RUL estimations. 

Recently, data-driven models have attracted significant attention as 
an alternative method, as they do not require prior knowledge of bat
teries, and data collection using these models is significantly more 
feasible across the industries as compared to model-based approaches. 
The major advantage of data-driven models is that they allow for the 
incorporation of historical data and additional domain knowledge (e.g., 
materials information) into a single model, which has not been consid
ered previously by model-based methods. Thus, the ability for battery 
state estimation is enhanced [6]. Furthermore, they are suitable for the 
analysis of a wide range of degradation trends, in addition to operating 
conditions under which uncommon incidents occur. Data-driven 
methods include statistical, machine learning, and deep learning 
methods. In several studies, statistical models such as autoregressive 
integrated moving average [20,21], the Grey model [22], the Wiener 
process [23], and entropy analysis [24] have been employed. However, 
statistical methods are generally not preferable for on-board SOH and 
RUL estimations because a large number of the models are inappropriate 
for nonlinear signals and are highly sensitive to the quantity and quality 
of data. Therefore, they do not demonstrate robustness for long-term 
predictions. To date, machine learning is the most recognized data- 
driven method that has a significant focus on the Gaussian process 
regression (GPR) [25–29], relevance vector machine (RVM) [30–32], 
support vector machine (SVM) [33–35], and decision tree [36,37]. 
Despite their widespread use, these machine learning tools are subject to 
the following drawbacks [1]: high computational cost with large data
sets (e.g., GPR and RVM), lack of sparseness (e.g., GPR and SVM), and 
lack of stability (e.g., RVM). In general, machine learning tools, 
regardless of the use of parametric or non-parametric models, are inef
fective in the case of large datasets, as they require re-training using the 
entire datasets upon the addition of newly observed data. Moreover, 
most of the previous studies regarding machine learning-based RUL 
estimations reported satisfactory performances only under restricted 
environmental conditions, such as a complete cycle under a constant 
current, which is not representative of real-world scenarios [38]. 
Moreover, they require well-handcrafted health indicators as input 
features, which may vary across different types of batteries, thus 
requiring expert knowledge of the battery system. 

The deep learning approach is more versatile because its model 
weights can be further updated through fine-tuning with respect to 
newly observed data, and it extracts meaningful features automatically. 
Furthermore, it can process big data that reflects numerous operating 
conditions, thus leading to an improved generalization performance. 
Due to its versatility, the number of studies that implement deep 
learning for SOH and RUL estimations is steadily increasing. For 
example, You et al. [38] implemented an artificial neural network that 
considered only the raw signals, i.e., voltage, current, and temperature, 
to estimate the SOH. However, there is a limit to its applications with 
respect to RUL estimations, as the model cannot effectively capture the 
temporal characteristics. Conversely, Liu et al. [39] developed an 
adaptive recurrent neural network to account for the temporal charac
teristics and the dynamic state during battery degradation. Although the 
model can adapt to the abrupt state changes as expected, it is not suit
able for long-term predictions due to the inherent gradient vanishing 
problem of RNNs [40]. To address the problem, Zhang et al. [41] pre
sented a detailed discussion on the implementation of long short-term 
memory (LSTM), which is an RNN variant, for on-board SOH and RUL 
estimations. The SOH was accurately estimated with or without the 
offline training data with an acceptable training time. Moreover, a 
Monte Carlo (MC) simulation was implemented to obtain the probability 
density function of the estimations, revealing that deep neural networks 
(DNNs) can provide probabilistic predictions similar to several other 
data-driven models. Similarly, Shen et al. [19] utilized a deep con
volutional neural network (DCNN) for online capacity estimations. The 
proposed model yielded superior RMSE and MaxE values to those of the 

RVM for the simulation of the actual case wherein an incomplete 
discharge process occurred before the subsequent charging cycle. 
Further recent studies that leverage the power of deep learning algo
rithms such as DNN [42], CNN [43], LSTM [44,45] prove their prom
ising results in either SOH or RUL estimation. However, regardless of the 
significant development of such deep learning-based prognostics sys
tems, in most previous studies, the system performances were only 
validated using a small number of test data collected under limited 
experimental conditions. Therefore, further investigation on using deep 
learning models for a much larger dataset is necessary. Moreover, all the 
essential aspects of the on-board battery prognostics, including proba
bilistic predictions and training time, were not investigated. With 
reference to the available literature, the “black-box” models have not 
been previously investigated and detailed. In parallel with the devel
opment of such data-driven models, hybrid models that combine a data- 
driven approach and model-based approach compose a distinct field of 
research, as the deficiencies of both model-types are minimized by their 
integration. Most previous studies were focused on the integration of 
machine learning with filtering methods. Thus, the potential of the deep 
learning approach was not considered [1]. 

In this study, a novel deep learning-based prognostics framework for 
SOH and RUL estimations is developed with an empirical model-based 
DNN, namely, a knowledge-infused recurrent neural network with 
Monte Carlo dropout (KIRNN-MC). The objective of the proposed 
framework is a high SOH and RUL estimation accuracy with few 
handcrafted features for on-board applications. The specific contribu
tions of this study are as follows:  

1. With reference to the available literature, this is the first study to 
demonstrate a hybrid methodology wherein an empirical model is 
leveraged to improve the generalization performance of a DNN. A 
hybrid model (KIRNN), which combines an empirical model and a 
DNN improves the mean absolute percentage error (MAPE) and the 
root mean squared percentage error (RMSPE) by as much as 0.21% 
and 0.2%, respectively. 

2. KIRNN-MC, which applies MC dropout to KIRNN provides a proba
bilistic prediction for decision-making or corrective action planning 
and ensures the robustness and reliability of the estimation perfor
mance, improving the MAPE and RMSPE by as much as 0.62% and 
1.06% compared with KIRNN.  

3. Knowledge infusion to a recurrent neural network and MC dropout 
together secures improved predictive performance and model 
robustness.  

4. Reliable and online accessible impedance-related features are 
extracted as distinct features for the efficient modeling of the battery 
capacity. Layer-wise relevance propagation (LRP) is addressed to 
facilitate the understanding of the feature contribution to modeling 
for further scientific discovery. This allows for the quantitative 
interpretation of the deep learning mechanisms in the decision- 
making of battery health estimations, which was previously chal
lenging due to its “black-box” nature. 

The remainder of this paper is organized as follows. Section 2 de
scribes the overall methodology for on-board battery health monitoring, 
and Section 3 presents the experimental settings and battery degrada
tion datasets used in this study. Section 4 presents a discussion on the 
results for different scenarios and combinations of methods and finally, 
Section 5 summarizes the findings of this study. 

2. Methodology 

The proposed deep learning-based prognostics framework for on- 
board SOH estimations is illustrated in Fig. 1. The proposed frame
work comprises three phases. In Phase A, impedance-related features are 
extracted to provide sufficient features for model training. The proposed 
framework then determines whether transfer learning is applied based 

S.W. Kim et al.                                                                                                                                                                                                                                  



Applied Energy 315 (2022) 119011

4

on the presence of a pre-trained model in Phase B. In the case wherein a 
pre-trained model is not present, i.e., there are no initial weights, the 
data-driven block inside KIRNN should be trained first. The entire model 
is then trained until an error in a loss function reaches a predefined 
threshold. It should be noted that the data-driven block is a multi-layer 
neural network, which should be optimized before training the entire 
recurrent model to ensure rapid convergence. If there is a pre-trained 
model, the training of the data-driven block is not conducted, and the 
KIRNN model is updated. In such a case, the pre-determined trainable 
parameters are fine-tuned with the newly measured data, which are 
referred to as online data in the literature [38,41]. The trainable pa
rameters include the four coefficients of the empirical model, the 
weights and biases from the DNN, and the parameters from the weighted 
linear combination of the two blocks. In Phase C, the uncertainty-based 
SOH can be estimated and monitored using stochastic forward passes. 
The following subsections detail the methods used in each phase. 

2.1. Phase A: Impedance-related feature extraction and data processing 

Lithium-ion battery degradation is caused mainly by the loss of 
lithium inventory (LLI), loss of active material (LAM), and conductivity 
loss [46,47]. The LLI is due to the consumption of available lithium-ions 
during the solid electrolyte interphase (SEI) film formation and 
decomposition, electrolyte decomposition, and lithium plating, whereas 
the LAM can be mainly attributed to graphite exfoliation, electrolyte 
oxidation, binder decomposition, and crystal structure disorder, thus 

resulting in a storage capacity loss. The conductivity loss intensifies 
when the SEI formation consumes electrolyte solvents, lithium plating 
causes pore-clogging, and particle cracking disrupts the electrical con
tact between the active particles and the current collector. These com
plex and diverse aging mechanisms increase the equivalent impedance 
of a cell during degradation [48], thus implying that the equivalent 
impedance is highly correlated with degradation and can therefore be 
considered an effective and sensitive feature for estimating the SOH. 

The physical insights into the aging mechanisms allow for 
impedance-related features to be extracted from the charge or discharge 
curves. Specifically, ten health indicators (HI1–HI10) were extracted 
from the discharge curve (the red circle in Fig. 2) at SOCs of 10–100% 
with intervals of 10%. Hereafter, these HIs are denoted as discharge 
voltage slopes at a constant current (DVS@CC). These slopes at different 
SOCs represent impedances, given that R = ΔV/ΔI ≅ ΔV/Δt in the 
constant current mode (refer to Appendix B). Because the slopes differ 
depending on the measurement period, the period length should be set 
in consideration of the trade-off between practicality and distinction as a 
good health indicator. The selected time period (Δt) was set as 160 s for 
all HIs [48]. It should be noted that the HIs were only extracted from the 
discharge curve in this study, given that the charging protocol was 
changed several times in the public dataset for accelerated degradation 
experiments, thus hindering the extraction of unified HIs. Different 
charge-discharge protocols result in different overpotentials. Hence, 
different impedances may be extracted for a battery of the same SOH, 
thus suggesting that the charge-discharge protocol plays a critical role in 

Fig. 1. Flowchart of the proposed framework for on-board SOH and RUL estimations.  
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the extraction of reliable features. Moreover, impedance depends on the 
temperature of a cell, which implies that different C-rates in several 
charge curves result in different cell temperatures. Hence, extracting 
impedances at charge curves is ineffective. Leveraging charge curves 
may be more practical in actual applications because electric vehicles 
can be charged using the same charge protocol in a garage or a charging 
station overnight. In particular, in this study, HIs were extracted from 
the discharge curve due to the limited data availability. Future work 
includes applying the proposed method to a charge curve, which has the 
same protocol during degradation experiments. 

Before training a DNN, a primary step is to preprocess the HIs. 
Specifically, the noise reduction of measurements is a common process 
to ensure the high accuracy of a DNN model. For the public dataset 
(described in Section 3), raw signals and their extracted features are 
passed through a Gaussian filter [49] to remove excessive noise. The 
Gaussian filter works by creating a Gaussian distribution-shaped kernel, 
and the kernel convolution gives the largest weight to the center point 
and smaller weights to the nearby points as they get farther away from 
the center. The only parameter to be determined before its usage is the 
sigma. This simple parameter selection would be a reason to address this 
method in this study. The larger the sigma value, the more noise is 
reduced. The sigma for the Gaussian distribution was set to 4.5 for all 
data, and the effect of noise reduction is shown in Figure S1 of the 
Supplementary Material. Their correlations with the discharge capacity 
or SOH are then estimated to demonstrate the effectiveness of this 
process. Table 1 clearly reveals that this process increases the correla
tion between each HI and degradation, thus increasing the estimation 
accuracy and ensuring robustness. 

Three combinations of feature groups are organized for model 
training because high linear correlations do not ensure an improved 
SOH estimation, considering the nonlinear degradation phenomenon. 
Group I consists of the top three relevant HIs (HI8, HI7, and HI6). Note 
that only the top three HIs are selected for rapid data processing to 
ensure efficient real-time data collection. Group II consists of the top 
three relevant features from the given features, including the charge 
time (CT), maximum temperature (Tmax), and internal resistance (IR). 

This group is used because its features are effective for estimating the 
SOH, as suggested in the literature [50]. Group III is a combination of 
both Group I and II, which comprises the top three correlated feature 
groups from the extracted features and the given features. The corre
sponding results are presented in Section 4. 

2.2. Phase B: Knowledge-infused recurrent neural network (KIRNN) 

In this paper, the KIRNN is proposed to model the capacity degra
dation over charge–discharge cycles. The recurrent part of the model is 
in the form of a cumulative damage model [51] that reflects the accu
mulation of damage over time. The model can be expressed mathe
matically as at = at− 1 +Δat , where at denotes the accumulated damage 
at time t. Such a model is applicable to SOH estimations because the 
parameter can generally be defined as monotonically decreasing despite 
the small capacity-increasing phenomena of lithium-ion batteries, which 
can be attributed to the extension of the charge stored in the negative 
electrode beyond the positive electrode [50,52,53]. Given that the 
model accounts for the damage increment after each time unit t, it can be 
modeled using RNNs for the estimation of the battery capacity degra
dation after each cycle N. This further allows for the solution of 
empirical models that may be expressed as ordinary differential equa
tions (ODEs) or partial differential equations (PDEs) as a function of the 
cycle N, which are frequently encountered in engineering problems 
[54–56]. 

The inputting of physics information or prior knowledge into a DNN 
has received significant attention recently because it increases the pre
diction accuracy and ensures robustness for new test datasets [57–62]. 
For example, a physics-informed layer modeling an ODE with a data- 
driven layer can successfully account for the bias term, thus improving 
the overall prognosis performance [63]. Based on the input of physics 
information, an empirical model, i.e., a type of prior knowledge, informs 
the recurrent unit to estimate the capacity degradation, as realized in 
this study. In particular, an empirical model is fused to a data-driven 
model to form a hybrid model under the hypothesis that a generalized 
empirical model may help improve the prediction accuracy of a purely 
data-driven model. A double-exponential model [64] was employed as 
the empirical model in this study, which accurately estimated several 
battery capacity degradation data under different operational conditions 
[9,11,31,64]. 

Q(N) = αexp(βN)+ γexp(λN), (1) 

where Q is the battery capacity over cycle N, and α, β, γ, and λ denote 
unknown coefficients, which should be determined through training. 
The Levenberg–Marquardt algorithm [65], which is a nonlinear curve 
fitting method, is implemented to set initialized coefficients for training 
the proposed hybrid model as shown in Figure S2 and Table S1 of the 
Supplementary Material. Hereinafter, the empirical model inside the 
recurrent unit is referred to as the knowledge-infused block. 

Fig. 3 illustrates the details of the proposed neural network, in which 
knowledge-infused blocks and a data-driven block were combined to 
form a hybrid recurrent unit for the computation of the damage incre
ment, i.e., the capacity degradation for each charge–discharge cycle 
with respect to an RNN. Fig. 3 (a) presents the process for pre-training a 
model, whereas Fig. 3 (b) demonstrates the extension through which 

Fig. 2. Graphical illustration of impedance-related feature extraction.  

Table 1 
Correlation coefficients before and after noise reduction.  

Extracted features HI10 HI9 HI8 HI7 HI6 HI5 HI4 HI3 HI2 HI1 

Before 0.38 0.54 0.89 0.80 0.70  0.58  0.46  0.13  − 0.02  − 0.07 
After 0.79 0.88 0.97 0.96 0.95  0.93  0.88  0.29  − 0.02  − 0.08 

Given features CT Tavg Tmin Tmax IR      

Before − 0.66 − 0.43 − 0.09 − 0.46 − 0.89      
After − 0.73 − 0.49 − 0.16 − 0.50 − 0.94       
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pre-trained weights from (a) are transferred for updating and fine-tuning 
the online data of size k. 

The specific components of the hybrid recurrent unit are illustrated 
in Fig. 4. Specifically, the green boxes constitute the knowledge-infused 
blocks, whereas the red box and the blue box correspond to the data- 
driven block and the linear combination block, respectively. The data- 
driven block includes dropout layers, which is described in the next 
subsection in detail. The knowledge-infused blocks are designed based 
on Equation (2a), which is a derivative of Equation (1), and its output is 
denoted as dQ/dN, where N is the cycle number. The data-driven block is 
a DNN with an output of dQDNN, as expressed by Equation (2b), where ψ , 
W(3), and z(3) correspond to the activation function, weights in the third 
layer, and the given input at the third layer, respectively. The specific 
implementation of Group I is exemplified in Fig. 4, where the inputs to 
the data-driven block are the cycle number, HI8, HI7, and HI6. The 
linear combination block was positioned such that the outputs from the 
knowledge-infused blocks and the data-driven block are weighted 
respectively by MK and MD, in accordance with Equation (2c), to 
calculate the final damage increment, ΔQN. Finally, ΔQN is added to 
QN− 1 to obtain the accumulated damage QN for the period of cycle N 

(Equation (2d)). 

dQ/dN = dQKNO = αβexp(βN)+ γλexp(λN) (2a)  

dQDNN = ψ(W(3)z(3)) (2b)  

ΔQN = MK(dQKNO)+MD(dQDNN) (2c)  

QN = QN− 1 +ΔQN (2d)  

2.3. Phase C: Monte Carlo dropout 

For several applications where a misclassified decision leads to fatal 
incidents, e.g., self-driving, medical judgments, and manufacturing, it is 
preferable that the system indicates a high level of uncertainty in the 
case of unknown test data rather than executing a random decision. This 
allows for the final decision to be handled by the domain experts. 
However, a large number of deep learning models are “deterministic,” 
thus providing a mere point estimate per test sample when making de
cisions, e.g., a regression problem. Although Bayesian neural networks 

Fig. 3. (a) Illustration of cumulative damage modeling over time using the hybrid recurrent unit and (b) a transfer learning scheme where trainable parameters are 
transferred for fine-tuning online data. 

Fig. 4. Schematic diagram of the proposed hybrid recurrent unit.  
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(BNNs) solve this problem by considering model parameters as a dis
tribution or density rather than a point, their accuracy may be insuffi
cient. This is because the integration for predictive inference is typically 
intractable and therefore replaced by an approximated value by mini
mizing the Kullbeck–Leibler divergence [66–69]. Moreover, the training 
process requires excessive computational time. 

To address this issue, Gal et al. [70] proposed the MC dropout 
technique, which demonstrated an improved uncertainty estimation 
when compared with BNNs. Moreover, its implementation is signifi
cantly simpler with a low computational cost. The underlying principle 
of the MC dropout technique is as follows. The traditional dropout 
scheme, which was previously applied to DNNs during training for 
regularization, has the same effect as that of BNNs if it is combined with 
an MC simulation in the test phase. In particular, applying dropout for 
training generates an ensemble of the model, from which the output 
distribution is obtained after the test data is evaluated for P stochastic 
times. The following equation is its simplified mathematical formulation 
of predictive inference for obtaining the probability distribution of test 
label y*, given test sample x*, training samples X, and its corresponding 
labels Y.   

where w and f(x*,wn) denote the model weights and the output of a 
neural network. Fig. 5 depicts the stochasticity of each forward pass, 
which is achieved by randomly nullifying the given number of neurons, 
i.e., red circles, in each layer. The second line of Equation (83) is a direct 
result of an MC integration to obtain an average result for P stochastic 
forward passes. The standard deviation of the results corresponds to the 
predictive uncertainty. A detailed explanation of the equivalence be
tween the application of the MC dropout and the solution of BNNs using 
a variational inference technique is given in [70]. 

In this study, the advantages of the MC dropout technique, namely, 
the ease of use and high computation speed, were leveraged to achieve 
the predictive uncertainty for SOH and RUL estimations. In several 
previous studies, other methods such as MC simulations [41] and deep 
ensembles [71] were investigated to add predictive uncertainty to the 
estimations. However, the former method requires a high computational 
cost, whereas the latter requires the modification of the network struc
ture. Furthermore, the MC dropout improves the prediction results due 
to its classical role as a regularizer, as detailed in Section 4. 

Several dropout layers were added inside the data-driven block of the 
hybrid recurrent unit to utilize the MC dropout technique, as illustrated 
by the orange vertical stripes shown in Fig. 4. With all of the afore
mentioned components described in subsection 2.2 combined with the 
MC dropout technique, the proposed neural network was designated as a 
KIRNN-MC. 

3. Experimental procedure 

3.1. Capacity fade data 1 

Capacity fade data [50] collected from 124 LFP/graphite A123 
APR18650M1A cells cycled under 72 fast charging conditions are used 
to train, validate, and test the proposed framework in this study. It is the 
largest public dataset of its type, with cycle lives ranging from 150 to 
2300. Thus, it is a highly suitable candidate for battery health prognosis 
tasks. The dataset is split into training, validation, and test sets as 41, 43, 
and 40 cells, respectively, according to [50]. It is worth noting that all 
models addressed hereafter are first trained using the training set and 
then fine-tuned with the early 100 cycles of the validation and test sets 
when evaluating. What is optimized with the training set is referred to as 
the pre-trained model, and this procedure starts off with training the 

Fig. 5. P stochastic forward passes of a neural network on test data to compute the mean (μ) and the standard deviation (σ) of the estimations.  

p(y*|x*,X, Y) =
∫

p(y*|x*,w)p(w|x*,X,Y)dw ≈
1
P
∑P

n=1
p(y*|x*,wn) =

1
P
∑P

n=1
f (x*,wn), (3)   
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data-driven block, as illustrated in Fig. 1. The fine-tuning starts off at the 
KIRNN training in the flow chart. The early 100 cycles can be considered 
as the online data that are collected in real-time, and they are depicted in 
the grey shaded region of Fig. 7. The overall data distributions and their 
statistics are displayed in Figure S3. The cells were placed inside an 
environmental chamber to maintain a temperature of 30 ℃. The specific 
profiles for the degradation experiments are summarized in Table 2. 

3.2. Capacity fade data 2 

Another battery aging dataset [72], made publicly open as of August 
2021 is used in the study for further evaluation. The data is collected 
from three types of commercial batteries, i.e., FST-3350 mAh, ME-2600 
mAh, and SY-2150 mAh, under 15 different cycle profiles. These bat
teries are made of lithium nickel manganese cobalt oxides as a cathode 
material, whereas capacity fade data 1 from subsection 3.1 use lithium 
iron phosphate as a cathode material. Hence, applying the proposed 
method to these data is an effective way to validate the robustness of the 
proposed method in that this study applies the proposed method to 
different shapes of a battery with different active materials. Table 3 
describes the collected datasets under the cycle profiles. In the table, ‘A’ 
denotes datasets obtained under accelerated charging conditions, thus 
the relatively low aging cycles compared to those of other datasets. ‘W’ 
stands for weakly-supervised datasets for which only a few capacity 
labels are given. Lastly, ‘T’ refers to fully supervised datasets with the 
entire capacity labels given. In this study, all ‘A’ and ‘W’ datasets are 
used for training (SY-2150 W1 is used for validation), whereas all ‘T’ 
datasets except for those of SY-2150 are used for testing. These SY-2150 
datasets are excluded for testing because of the two successive cycling 
processes, which cause inconsistent feature extraction due to different C- 
rates during the aging process. Specifically, the impedance-related fea
tures proposed in Section 2.1 are only valid for use under the constant C- 
rates because they depend on C-rate due to overpotential. In addition, it 
should be noted that ‘W’ datasets are trained with the entire reference 
capacity labels because weakly-supervised learning is out of scope of this 

study. Please refer to [72] for further details of the data configuration. 

3.3. Construction of deep neural networks 

The proposed architecture of the KIRNN-MC was determined heu
ristically, as summarized in Table 4. Furthermore, several baseline 
DNNs, including LSTM, CNNs, and multi-layer perceptron (MLP) were 
tested and evaluated in parallel to validate the superiority of the pro
posed framework. It should be noted that the structures of these models 
were well-established through hyperparameter optimization to ensure a 
fair comparison. This is because there are no benchmark models of the 
same types for the particular dataset used in this study. Therefore, the 
Bayesian optimization method was implemented to optimize the 
hyperparameters of the model structures. 

In particular, Bayesian optimization functions by the iteration of 
posterior distribution construction due to the typical fitting of the 
Gaussian process on given data points, followed by the selection of a new 
set of hyperparameter space that is likely to be used in the next iteration 
[73–75]. The selection of hyperparameters at each iteration is deter
mined by the posterior distribution combined with an exploratory 
strategy, such as expected improvement, which determines the local 
maxima of the acquisition function. In contrast with the conventional 
methods, such as the naïve grid search and the random search, which 
use random combinations of hyperparameters, Bayesian optimization 
utilizes the prior knowledge based on the fact that similar inputs 
generate similar outputs. Consequently, its convergence is significantly 
more rapid with an improved result. Specifically, the objective of the 
Bayesian optimization process is to solve the following objective 
function: 

x* = argmax
x∈Λ

f (x), (4) 

where x is the set of input hyperparameters, and Λ represents the pre- 
defined bounded regions of the entire hyperparameter space. Through 
the iterative Bayesian optimization process, the parameter x* that best 
predicts the battery capacity is adopted. 

The LSTM, CNN, and MLP models were optimized through Bayesian 
optimization, given the searching space of the hyperparameters, as listed 

Table 2 
Detailed cycle profiles for the capacity fade data 1. The charging policies consist 
of 72 different combinations of current steps ranging from a state of charge of 
0 to 80%.   

Policy SOC level 

0% 50% 80% 

Charging One- 
step 

Apply 3.6C (C-rate) 
Apply 1C (CCCV) to 3.6 V with 
current cutoff of C/50 Two- 

step 
Apply 
6C 

Apply 
4C 

Discharging One- 
step 

Apply 4C to 2.0 V with current cutoff of C/50  

Table 3 
Detailed cycle profiles for the capacity fade data 2. The first C-rate stands for the 
constant-current charge rate and the second C-rate is the constant-current 
discharge rate. Then comes the number of cycles until the end-of-life. ‘+’ de
notes two successive cycling processes.   

FST-3350 ME-2600 SY-2150 

A 1.0C-1.0C × 50 
cycles 

1.25C-1.25C × 70 
cycles 

1.0C-1.0C × 525 cycles 

W1 0.3C-0.3C × 370 
cycles 

0.48C-0.48C × 1094 
cycles 

0.5C-1.0C × 844 cycles 

W2 0.5C-0.5C × 260 
cycles 

0.67C-0.67C × 543 
cycles 

0.7C-1.0C × 525 cycles 

T1 0.3C-0.3C × 395 
cycles 

0.29C-0.29C × 695 
cycles 

0.7C-1.0C × 300 + 1.0C-1.0C ×
316 cycles 

T2 0.4C-0.4C × 430 
cycles 

0.67C-0.67C × 444 
cycles 

1.0C-1.0C × 210 + 0.5C-1.0C ×
653 cycles 

T3 0.5C-0.5C × 235 
cycles 

0.77C-0.77C × 179 
cycles 

1.5C-2.0C × 90 + 0.5C-1.0C ×
719 cycles  

Table 4 
Proposed KIRNN-MC architecture.  

Knowledge-infused block 

Layer Type Dimensions 

Input Cycle 1 
Hidden 1 Exponential terms 2 
Output Capacity (dQKNO) 1 
Data-driven block 
Layer Type Dimensions 
Input Cycle + HIs 1 + 3 
Hidden 1 Dense layer 50  

ReLU activation –  
Dropout – 

Hidden 2 Dense layer 10  
ReLU activation –  
Dropout – 

Hidden 3 Dense layer 10  
ReLU activation –  
Dropout – 

Hidden 4 Dense layer 10  
ReLU activation –  
Dropout – 

Hidden 5 Dense layer 5  
ReLU activation –  
Dropout – 

Output Dense layer (dQDNN) 1 
Linear combination block 
Layer Type Dimensions 
Input dQKNO + dQDNN 2 
Output ΔQ 1  
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in Table S2. The optimized architectures of each model, as well as the 
training process details, are summarized in Table 5. The input di
mensions of the data-driven block may change depending on the type of 
dataset used, e.g., Group I. The provided architectures may not be the 
optimal models due to the lack of resource and time. However, Bayesian 
optimization generally guarantees more accurate results than manual 
optimization with limited resource and time, as claimed by numerous 
authors and practitioners [74,75]. 

The programming was conducted using Python 3.5.2, Tensorflow 
1.14.0, and Keras 2.2.5. The computation was carried out using a 
GeForce RTX 2080 Ti GPU. The mean absolute percent error (MAPE) 
and root mean squared percent error (RMSPE) [71] were computed for 
the quantitative evaluation of the models for SOH monitoring as follows. 

MAPE =
1
P
∑P

i=1

|y*
i − yi|

yi
(5)  

RMSPE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
P

∑P

i=1
(
y*

i − yi

yi
)

2
√

(6) 

where y*
i and yi denote the estimated value and the target value at the 

i th occurrence from a total of P test samples. The MAE and RMSE were 
used for RUL estimations to provide a more intuitive understanding of 
the results represented in terms of the cycle number. They are equivalent 
to the MAPE and RMSPE, except for the denominators. 

4. Results and discussion 

The effectiveness of the proposed method was first validated, as 
detailed in subsections 4.1–4.3 (from Phase A to Phase C) and 4.4 
(overall discussion), using the validation set consisting of 43 cells. The 
established models were then applied to the test set consisting of 40 cells 
to demonstrate its generalization capability and robustness on data that 
exhibit different capacity fading behaviors. The practical on-board 
battery health monitoring was examined, as presented in subsection 
4.5, including practical scenarios of the proposed framework for SOH 
estimations and the feasibility of applying RUL estimations. 

4.1. Contribution of impedance-related features 

Impedance-related features were extracted and used as distinct fea
tures for training the proposed model in this study, whereas other fea
tures were used in the literature [50]. The quantitative contribution of 
these features to the estimation accuracy and their effectiveness as 

health indicators were compared with those of other features, as pre
sented below. Specifically, LRP was addressed to evaluate the contri
bution of each feature to the output. LRP is a technique based on the 
Taylor series, which is suitable for explaining the decision of a neural 
network through decomposition [76]. This method re-distributes the 
relevance score in a top-down manner from the output node toward the 
input nodes. A detailed LRP formula is presented in Appendix C, and 
Fig. C1 illustrates the backward propagation of the relevance score. In 
summary, LRP implements saved weights at every epoch when training 
the KIRNN-MC and ranks the input features with respect to their con
tributions to the prediction output. 

The LRP was evaluated using Group III, i.e. all the features, as the 
analysis clearly compared the relative contribution of the impedance- 
related features to that of other features employed in previous studies. 
Fig. 6 (a) presents the evolution of the relative feature importance 
during training, which was computed by normalizing the relevance 
scores at each epoch using a min–max normalization method. Hence, the 
highest-ranked feature had a relative importance of one, and the lowest- 
ranked feature had a relative importance of zero. The relative impor
tance first fluctuated because the neural network was not sufficiently 
trained during the period of these epochs. In contrast, the relative 
importance of each feature gradually converged to certain values with 
an increase in the number of epochs. Specifically, HI7 demonstrated the 
highest relative importance after 1400 epoch, whereas Tmax contrib
uted slightly to the SOH estimation, given that its relative importance 
was low. The relative importance of HI8, HI6, and CT gradually 
increased after 4000 epochs, whereas that of other features decreased 
with an increase in the number of epochs. As the model was sufficiently 
optimized, the difference was more significant, and the overall rank 
converged. Hence, the relative importance was finalized after 7500 
epochs, after which the optimal prediction accuracy for the validation 
set was achieved. Fig. 6 (b) reveals that the HIs exhibited higher rele
vance scores than the given features throughout the training epochs. 
Specifically, three HIs, which exhibited the highest linear correlations, 
significantly contributed to the SOH estimation. Moreover, the CT and 
IR contributed to an extent to the SOH estimation, whereas Tmax 
contributed minimally. The results confirm that impedance-related HIs 
are superior health indicators to the other features proposed in the 
literature. The results correspond with the estimation accuracy listed in 
Table 6. In the validation set, Group I (HI8, HI7, and HI6) demonstrated 
the highest estimation accuracy with respect to the MAPE, whereas 
Group II (the given features) demonstrated the highest estimation ac
curacy with respect to the RMSPE. Moreover, the errors denoted by the 
MAPE and RMSPE exhibited similar orders of magnitude. Hence, it is 
difficult to select the optimal HIs, although LRP suggests Group I to be 
effective HIs. In contrast, the analysis of the estimation accuracy for the 
test set clearly revealed that Group I demonstrated the highest estima
tion accuracy with respect to both metrics, thus suggesting that 
impedance-related features were highly-correlated health indicators for 
battery health monitoring. Conversely, Group II and Group III, which 
contained less correlated features compared with those of Group I, 
exhibited lower estimation accuracies. These results indicate that the 
presence of irrelevant features (e.g., Tmax) negatively influences the 
estimation performance, given that the non-zero weights assigned to 
these features play a role in noise addition with respect to estimating 
outcomes [77]. The contribution of these HIs to the accuracy and 
robustness was more clearly demonstrated in the test set. Specifically, 
the ratios of the MAPE and RMSPE for Group II and Group III in com
parison with that of Group I were larger in the test set, as shown in the 
parentheses in Table 6. This observation suggests that the validation set 
was used for the optimization of hyperparameters. Therefore, overfitting 
may occur for Group II and Group III. Hence, the neural network trained 
with these groups exhibited a low generalization capability and 
robustness, thus resulting in a low estimation accuracy for the test set. 

Table 5 
Training process details of the baseline deep learning models optimized using 
Bayesian optimization.  

LSTM CNN MLP 

Num. of input 
nodes 

10 Num. of conv. 
layers 

6 Num. of input 
nodes 

27 

Num. of hidden 
layers 

1 Num. of filters 16 Num. of hidden 
layers 

4 

Num. of hidden 
nodes 

10 Batch size 256 Num. of hidden 
nodes 

46 

Step size 5 Kernel size 2 Batch size 979 
Batch size 502 Stride 1 Early stopping 50 
Early stopping 50 Pool size 2 Loss function MSE 
Loss function MSE Num. of dense 

layers 
1 Learning rate 2.3e- 

3 
Learning rate 7e-3 Num. of dense 

nodes 
64 Optimizer Adam 

Optimizer Adam Early stopping 50 Weight decay 5e-3 
Weight decay 1.5e- 

3 
Loss function MSE     

Learning rate 1e-4     
Optimizer Adam     
Weight decay 1e-2    
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4.2. KIRNN implementation 

The effect of leveraging prior knowledge in model construction was 
analyzed, as presented in this subsection. Specifically, the KIRNN was 
compared with the cumulative damage RNN (CDRNN). In particular, the 
KIRNN is the cumulative damage framework embedded with an 
empirical model (a double exponential model), whereas the CDRNN 

only has the architecture of a cumulative damage model in the absence 
of all the knowledge-infused blocks. Both models do not include the 
dropout layers in the data-driven block. The contribution of the layers is 
discussed in the following subsection. In addition to the two models, the 
commonly adopted baseline DNNs, including LSTM, CNN, and MLP 
whose architectures were optimized using Bayesian optimization were 
evaluated to demonstrate the superiority of the proposed method. The 
results of the SOH estimation of a sample cell (Cell #25 from the vali
dation set) using all the models are exemplified in Fig. 7 (a). It should be 
noted that a small portion of online data, which corresponds to a set of 
data collected from the first 100 cycles (below the gray dashed hori
zontal line), was used at the start to tune the pre-trained models in 
advance, as illustrated in Fig. 3. The KIRNN and CDRNN were deter
mined to be more suitable than the baseline DNNs for the estimation 
using the validation set. However, no significant difference was 
observed between the two models. Moreover, the estimation accuracies 

Fig. 6. Layer-wise relevance propagation results show the evolution of the relative feature importance over (a) all the training epochs and (b) the finalized relevance 
score at Epoch 7500. 

Fig. 7. State of health estimation of (a) Cell #25 from the validation set and (b) Cell #11 from the test set.  

Table 6 
Performance evaluation of pre-defined feature groups based on KIRNN-MC.    

Group I Group II Group III 

Validation set MAPE (%) 1.49 1.50 (1.01) 1.51 (1.01) 
RMSPE (%) 2.36 2.24 (0.95) 2.33 (0.99) 

Test set MAPE (%) 1.0 1.58 (1.58) 1.38 (1.38) 
RMSPE (%) 1.36 2.31 (1.70) 1.76 (1.29)  

Table 7 
Summary of state of health estimation using several deep learning models with and without the fine-tuning process. FT refers to fine-tuning. Optimal scores are shown 
in bold font.    

KIRNN-MC KIRNN CDRNN-MC CDRNN LSTM CNN MLP 

Validation set MAPE (%) w/ FT 1.49 1.61 1.51 1.65 1.77 2.00 2.20 
w/o FT 1.56 1.70 1.61 1.77 1.88 2.09 2.34 

RMSPE (%) w/ FT 2.36 2.62 2.42 2.59 2.65 3.13 3.24 
w/o FT 2.47 2.74 2.52 2.74 2.79 3.26 3.37 

Test set MAPE (%) w/ FT 1.00 1.62 1.94 2.2 1.83 2.73 3.03 
w/o FT 1.12 1.71 2.06 2.30 1.96 2.84 3.19 

RMSPE (%) w/ FT 1.36 2.42 2.69 3.4 2.62 4.3 4.44 
w/o FT 1.51 2.57 2.78 3.56 2.80 4.44 4.59 

Time required for FT of new online data at transfer learning (~100 cycles, s) 339 304 347 263 5064 65 36  
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of all the models were of similar orders of magnitude. It is difficult to 
evaluate whether the improved accuracies of the KIRNN and CDRNN 
can be attributed to network superiority or hyperparameter optimiza
tion. In contrast, the estimated SOH of another sample cell, i.e., Cell #11 
from the test set, revealed that the KIRNN outperformed the CDRNN and 
other DNNs, as it was more in accordance with the ground truth line 
(Fig. 7 (b)). The comparison results confirmed that the KIRNN ensures a 
high estimation accuracy and robustness on a new dataset. Specifically, 
the MAPE and RMSPE decreased by 0.58% and 0.98% (Table 7), 
respectively, by knowledge infusion into the network when the models 
were evaluated on the test set. This implies that the empirical model, 
which supervises the degradation behavior of lithium-ion batteries, 
plays a critical role in a purely data-driven deep learning model. 
Moreover, this phenomenon is more significantly observed for data from 
a different probability distribution. In conclusion, the supervision of 
physical knowledge increases the estimation accuracy and improves the 
robustness of the neural network. 

4.3. MC dropout implementation 

The contribution of the MC dropout technique to the estimation 
accuracy was analyzed. The effect of the MC dropout implementation 
was first validated on a sample cell from the validation set (Cell #5), 
followed by a sample cell from the test set (Cell #20). The results for 
other cells were similar, although they were not included in this 
manuscript for conciseness. For all cases, 50 stochastic passes were 
executed to compute the mean and standard deviation of the estimations 
in the test phase. Fig. 8 illustrates the SOH estimation results for the 
cases. In particular, Fig. 8 (a) and (c) compare the CDRNN and CDRNN- 
MC with Cell #5 and Cell #20, respectively, whereas Fig. 8 (b) and (d) 
compare the KIRNN and KIRNN-MC with Cell #5 and Cell #20, 
respectively. The solid black line represents the ground truth. The blue 

dashed line denotes the point estimation without using the MC dropout 
technique, whereas the red dashed line and surrounding yellow region 
represent the estimated mean and three-sigma confidence bounds when 
using the MC dropout technique. 

With respect to the validation data (Cell #5), using the MC dropout 
slightly improved the estimation performance. The difference was 
almost negligible, although the overall MAPE and RMSPE were 
improved by 0.14% and 0.17%, respectively, for the CDRNN-MC and 
0.12% and 0.26%, respectively, for the KIRNN-MC (Table 7). No sig
nificant changes were observed between the CDRNN-MC and KIRNN- 
MC. First, the difference between the CDRNN-MC and CDRNN was 
only observed at the small end portion of the estimation points toward 
the end-of-life. Second, the mean estimation points exhibited significant 
fluctuations throughout the cycles, thus providing relatively low confi
dence for the estimation. Therefore, it can be concluded that the MC 
dropout technique did not contribute significantly to the SOH estima
tion, despite the slight increase in performance. The only significant 
difference was the relatively higher estimation confidence intervals for 
the KIRNN-MC when compared with the CDRNN-MC. This observation 
supports the hypothesis that a generalized empirical model helps 
improve the estimation accuracy of a purely data-driven model. 

The effect of the MC dropout was more significant for the test data 
(Cell #20), as shown in Fig. 8 (c) and (d). Specifically, the overall MAPE 
and RMSPE were improved by 0.26% and 0.71%, respectively, for the 
CDRNN-MC and 0.62% and 1.06%, respectively, for the KIRNN-MC 
(Table 7). Different from the previous case in which the effect of the 
MC dropout was similar for the CDRNN-MC and KIRNN-MC, the effect 
was more evident for the KIRNN-MC when applied to the test set. This 
suggests that the MC dropout contributes significantly to the SOH esti
mation when prior knowledge is infused. The mean estimation of the 
KIRNN-MC was closer to the ground truth, and the difference between 
the models increased in accordance with the rapid downward trend of 

Fig. 8. Contribution of MC dropout technique to state of health estimation with (a) the CDRNN and (b) KIRNN for Cell #5 from the validation set, and the (c) CDRNN 
and (d) KIRNN for Cell #20 from the test set. 
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the curve. In particular, the difference was first observed at an earlier 
stage. The KIRNN output was almost in parallel with the lower bound of 
the KIRNN-MC output, thus implying the predictive generalization effect 
of the MC dropout technique when applied in conjunction with knowl
edge infusion. It should be noted that there were significantly fewer 
fluctuations in the estimation with the narrower upper and lower 
bounds of the confidence interval. Consequently, the MC dropout 
technique is the most effective when used simultaneously with the 
KIRNN (KIRNN-MC), as confirmed by the results of the overall test set 
(Table 7). This phenomenon can be attributed to the inherent nature of 
the MC dropout, as it mainly accounts for the model uncertainty, i.e., 
epistemic uncertainty, which can be reduced by optimizing the model 
and conducting the training process using a sufficient amount of data 
[78]. It is highly probable that infusing empirical knowledge into model 
construction optimizes the model and, therefore, reduces the related 
uncertainty. The effect appears more clearly around points towards the 
end-of-life where the uncertainty is large due to a sudden change in the 
aging trajectory. Moreover, the observation is in accordance with the 
qualitative analysis of MC dropout, in which predictive performance is 
improved when MC dropout is applied to a standard neural network 
[78]. This particular regularization term originates from the Bayesian 
approximation of dropout in which the Kullbeck-Leibler divergence 
between the approximate posterior q(w) and the posterior, p(w|X,Y) is 

minimized to ultimately satisfy the Bayes rule and provide probabilistic 
predictions on unseen data points. Dropout on neural network adds 
stochasticity or randomness to the output of neural network, securing 
robustness. Specifically, it can be represented as endowing Bernoulli 
distribution upon the weights and biases of the neural network. There
fore, the randomness (Kullbeck-Leibler divergence) inherent in the 
reparametrized form of evidence lower bound (ELBO), which is a trick to 
compute the posterior of a Bayesian neural network, is qualitatively 
equivalent to the same terms (Bernoulli distributed weights and biases). 
Therefore, adding dropout to neural network mathematically equates to 
adding an L2 regularization term (stochastic) weighted by the factor η to 
a data-fit term (deterministic), commonly observed objective terms for 
deep learning models. The regularization term minimizes the weight 
values of neural network, which will lead to reduced effect by the local 
noise of training data. This prevents overfitting of the network and thus 
generalizes the network output. Further investigation will be conducted 
in future work. 

4.4. Discussions on the proposed method 

The effectiveness of the proposed models was demonstrated by 
quantitative comparison with the commonly adopted baseline DNNs 
using the entire capacity fade datasets described in subsection 3.1. 

Fig. 9. The state of health estimation of the test cells using the proposed KIRNN-MC. The test cells are (a) Cell #3, (b) Cell #11, (c) Cell #15, (d) Cell #19, (e) Cell 
#29, and (f) Cell #31. 
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Table 7 summarizes the quantitative results for the validation set and the 
test set using all the models, including the variants of the proposed 
model, to confirm the overall generalization effect of the knowledge 
infusion and the MC dropout implementation. Furthermore, the training 
time of the online data (~100 cycles) for the model parameter update 
was computed for each model until a low error was achieved, as it is an 
important metric for implementing the proposed method in an on-board 
BMS. Fig. 9 presents the results of the SOH monitoring for six test cells 
(Cell #3, Cell #11, Cell #15, Cell #19, Cell #29, and Cell #31). It should 
be noted that the estimations were conducted by the KIRNN-MC, which 
demonstrated the most superior performance overall, and they were in 
accordance with the ground truth in most cells, as depicted in Fig. 9. 

It can be seen from Table 7 that the proposed KIRNN-MC exhibited 
the most superior performance in terms of the MAPE and RMSPE for the 
validation set and test set. Given that the models were optimized based 
on the validation set, their estimation performances with respect to the 
test set were thoroughly investigated. In the absence of the knowledge- 
infused blocks and MC dropout, i.e., the CDRNN, the model out
performed the CNN and MLP. However, it exhibited poorer performance 
than LSTM, thus implying that the cumulative damage modeling is not 
sufficient to accurately estimate the SOH. Furthermore, the imple
mentation of the MC dropout technique (CDRNN-MC) decreased the 
metric scores by 0.26% (MAPE) and 0.71% (RMSPE). However, the 
result was slightly less accurate than that of LSTM. Embedding an 
empirical model within the hybrid recurrent unit (KIRNN) would be 
beneficial, as described in subsection 4.2. The model outperformed 
LSTM. An excellent performance was achieved when the model was 
integrated with an empirical model under the application of the MC 
dropout technique (KIRNN-MC), as it exhibited a more significant 
decrease in the MAPE (0.94%) and RMSPE (1.33%). Compared with 
LSTM, the KIRNN-MC exhibited a 0.83% decrease in the MAPE and 
1.26% decrease in the RMSPE. Thus, the effectiveness of the proposed 
model in comparison with the existing deep learning models was 
validated. 

An important concern regarding the fine-tuning process is whether 
or not the true SOH label of the first 100 cycles can be collected in 
advance during the periodic maintenance of batteries. To alleviate such 
concerns, the same results without the fine-tuning process (w/o FT) are 
also listed in Table 7. The results reveal that although the performance 
slightly degrades overall for all models, the severity of degradation is not 
significant enough to change the conclusion. Therefore, it can be 
concluded that the fine-tuning process is conducted to ensure a better fit 
to a new test cell. 

The training times of the online data provide significant insight into 
the trade-off between the accuracy and training time of models. The 
KIRNN-MC required approximately 339 s for the fine-tuning of the 
newly measured data. This is not comparable with the training times of 
the CNN and MLP. However, it is practical for on-board applications 

because the interval time between cycles is significantly longer than the 
training time. In contrast, LSTM required over 5000 s, which is multiple 
times larger than that of the proposed model. Hence, this study was 
focused on the CDRNN instead of LSTM. In the case wherein the esti
mation accuracy is more important than the training time of online data, 
LSTM can be supervised using physical information. 

The proposed algorithm is further validated on another capacity fade 
dataset introduced in Section 3.2. For this particular case, only the 
KIRNN-MC is compared against the baseline deep learning models as 
other variants, including KIRNN, CDRNN-MC, and CDRNN, have proven 
to be less efficient. As mentioned in Section 3.2, ‘A’ and ‘W’ datasets are 
utilized for training the models (SY-2150 W1 is used for validation) and 
‘T’ datasets (FST-3350 and ME-2600 only) for testing afterward. Fig. 10 
(a) and (b) illustrate the predicted SOH of FST-3350 T3 and ME-2600 T1, 
respectively. The figure reveals that KIRNN-MC indicated by the red 
dashed line shows the most accurate estimation than the other models. 
In addition, no fine-tuning has been conducted for this testing to validate 
the proposed methodology under the circumstance in which no refer
ence SOH label is available for the fine-tuning. Testing results of the 
remaining datasets are provided in Figure S4 of the Supplementary 
Material for the sake of brevity. 

The quantitative results are provided in Table 8. In contrast to the 
results of Table 7 (capacity fade data 1), KIRNN-MC demonstrates 
relatively poor performance for the validation set. This phenomenon 

Fig. 10. The estimated SOH of (a) FST-3350 T3 and (b) ME-2600 T1 using KIRNN-MC and the baseline deep learning models.  

Table 8 
Summary of state of health estimation using several deep learning models. 
Optimal scores are shown in bold font.     

KIRNN- 
MC 

LSTM CNN MLP 

Validation 
set 

SY-2150 
W1 

MAPE (%)  0.96  0.71  0.55  0.75 
RMSPE 
(%)  

1.18  0.83  0.70  0.90 

Test set FST-3350 
T1 

MAPE (%)  0.80  0.96  2.04  2.71 
RMSPE 
(%)  

1.25  1.46  2.28  2.93 

FST-3350 
T2 

MAPE (%)  0.81  0.84  2.05  2.88 
RMSPE 
(%)  

1.06  0.93  2.43  3.30 

FST-3350 
T3 

MAPE (%)  0.86  0.99  1.64  2.70 
RMSPE 
(%)  

1.16  1.33  1.80  2.96 

ME-2600 
T1 

MAPE (%)  0.49  0.51  0.56  0.70 
RMSPE 
(%)  

0.63  0.64  0.67  0.79 

ME-2600 
T2 

MAPE (%)  1.09  1.13  1.51  2.14 
RMSPE 
(%)  

1.46  1.47  1.64  2.32 

ME-2600 
T3 

MAPE (%)  0.62  0.56  1.27  2.13 
RMSPE 
(%)  

0.84  0.72  1.49  2.37  
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attributes to KIRNN-MC having stronger regularization terms due to the 
empirical model and MC dropout, which prevent overfitting to the 
trained data. On the other hand, it performs much better on the test set 
as expected. KIRNN-MC outperforms LSTM by as much as 0.05% MAPE 
and 0.02% RMSPE on average, thanks to its better generalization per
formance. The exceptional result of ME-2600 T3 may have been caused 
by its close similarity to one of the training datasets, e.g., ME-2600 W2 
with respect to the extracted impedance-related features. The practical 
on-board application scenario is further discussed in subsection 4.5.1. 

4.5. Electric vehicle applications 

4.5.1. Scenario for on-board SOH monitoring 
The SOH estimation was conducted upon the collection of new input 

features from the charge–discharge cycles in real-time. The suggested 
input features in the proposed framework were the impedance-related 
features in Group I (HI3, HI4, and HI5), which were extracted from 
the readily accessible voltage curve during the discharging process of a 
constant current protocol due to the high estimation accuracy of this 
feature combination. However, the discharging process of a constant 
current protocol until a battery is fully discharged is not feasible or 
applicable with respect to the usage behavior of batteries in electric 
vehicles. Typically, most batteries are exposed to stochastic discharging 

processes depending on the driving conditions [79]. The extraction of 
such features from the voltage curve during the charge may be an 
alternative method, given that batteries are typically charged using the 
same CCCV protocol overnight in a garage or a charging station. It 
should be noted that this scenario is not applicable to the public dataset 
employed in this study, given that the charging protocol was changed 
several times for the acceleration of the degradation experiments, thus 
limiting the extraction of unified HIs in a charge curve. Therefore, the 
suggested solution to address the issue is SOH estimation at scheduled 
maintenance, e.g., twice annually or per a specified number of cycles 
[80]. In scheduled maintenance, the same discharge protocol used for 
the dataset can be applied, and impedance-related features can be 
extracted from voltage curves under similar conditions to ensure the 
robustness of the proposed model. 

4.5.2. On-board RUL monitoring 
The KIRNN-MC and the other compared models were employed to 

estimate RULs using the test set, given that the RUL is a critical 
parameter that requires estimation in addition to the SOH in electric 
vehicle applications. It should be noted that RULs have been monitored 
by training structurally equivalent additional DNNs with the target SOH 
values replaced by the target RUL values. Moreover, the training should 
be conducted separately for SOH and RUL estimations because the 

Fig. 11. RUL estimation of test cells using the proposed KIRNN-MC. The test cells are (a) Cell #3, (b) Cell #11, (c) Cell #15, (d) Cell #19, (e) Cell #29, and (f) 
Cell #31. 
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parameters are qualitatively different. For future SOH and RUL esti
mations, only the cycle steps and the extracted health indicators (HIs) 
are provided. In most previous studies, the RUL was represented as a 
quantity that decreased linearly and inversely with respect to the cycle 
of an actual system. However, for various applications, the RUL is 
generally more difficult to directly predict than the SOH due to the 
different target RULs of each system. This is different from the SOH, 
which starts at 100% and degrades thereafter. In particular, RULs cannot 
be normalized effectively. This characteristic destabilizes the training of 
numerous existing deep learning models. To address this issue, the target 
RUL linear degradation model was modified to a piece-wise linear 
degradation model [81–83], such that the starting points of the RULs, i. 
e., the initial RULs, were equivalent and reflected the actual system 
degradation phenomenon, which is negligible until a given instant. In 
this study, the piece-wise linear degradation model was modified further 
to more accurately reflect the battery degradation mechanism. The early 
phase of the model, which was previously considered negligible, was 
changed to a linear model with a different gradient. Thus, a different 
type of initial RUL was required. In particular, a second linear model was 
used to reflect the early degradation phase, during which the RUL 
decreased at a significantly lower rate than during the later phase. 
Therefore, the piece-wise linear RUL model consists of two linear lines, 
the first of which represents slow aging in the first half, and the other 
representing accelerated aging in the second half. The two linear models 
and initial RULs are shown in Fig. 11, as indicated by the dashed lines. 

Given that RUL exhibits a negligible degradation up to a given point, 
followed by a linear decrease, the RUL estimation models should detect 
the instant of the abrupt change of state, so-called ‘knee point’ [84–86], 
to reflect the gradual decrease until zero RUL is reached. The knee point 
is generally caused by a phase shift in the underlying degradation 
mechanism. The first phase of degradation is mainly dominated by LAM. 
The second phase of degradation, which induces an abrupt decline in the 
battery capacity, is dominated by LAM and LLI. The knee points on SOH 
curves were detected by the “Kneedle algorithm,” which determines the 
knee point of a concave curve [87]. Moreover, their locations are 

indicated by the blue stars in Fig. 11. 
Fig. 11 illustrates the RUL estimation results of the proposed KIRNN- 

MC for the same test cells ((a)–(f)) as those used for the SOH monitoring. 
As can be seen from the figure, the model captured the decreasing RUL 
trend with a high confidence level until the state changed at the knee 
point. The confidence interval widened after the point. The results are 
satisfactory because the early phase of degradation was the same for all 
the training data until the state changed, followed by variations 
throughout the cells. Moreover, in general, the knee points of the pre
dicted curves and actual state changes were in good agreement, thus 
implying that the model successfully detected the start of the later 
degradation phase. The estimations after the state changed were suffi
ciently accurate to utilize the proposed model for on-board applications. 
In general, the KIRNN-MC exhibited a significantly superior predictive 
performance with respect to RUL estimations than the other deep 
learning models. The effects of knowledge infusion and the MC dropout 
implementation were significant. The averaged results for all the test 
cells are summarized in Table 9. Similar to the other results, the pro
posed method outperformed the other DCNN, especially in the test set, 
thus suggesting that the proposed method is effective for SOH and RUL 
estimations with respect to accuracy and robustness. 

5. Conclusions 

A novel deep learning-based prognostics framework was proposed, 
and its applicability for the on-board state of health and remaining 
useful life estimations of lithium-ion batteries was demonstrated. The 
proposed method features three characteristics as the key contributions. 
First, reliable and online accessible impedance-related features or health 
indicators extracted from discharge curves can be leveraged to accu
rately model the battery capacity degradation over charge–discharge 
cycles. Moreover, the layer-wise relevance propagation analysis quan
titatively validates the effectiveness of health indicators as distinct 
features in describing the complex and nonlinear degradation phe
nomena of batteries. Second, the estimation performance is significantly 

Fig. C1. Relevance score propagation from the output node toward the input nodes.  
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improved through knowledge infusion to the recurrent unit, which 
generalizes its estimation capacity with respect to newly added datasets. 
Third, the robustness of the proposed model and uncertainty-based es
timations are realized by addressing the Monte Carlo dropout technique. 
This endows the deep learning-based decisions with higher reliability. 
Specifically, the proposed model outperforms several baseline deep 
learning models by the maximum of 2.03% and 3.08% with respect to 
the mean absolute percent error and root mean squared percent error, 
respectively, in state of health monitoring, and 29.9 cycles and 32.1 
cycles with respect to the mean absolute error and root mean squared 
error, respectively, in remaining useful life monitoring in the test phase. 
A discussion is presented on the applicability of the proposed framework 
to on-board systems, and the scheduled maintenance is suggested as a 
solution. Future research will include the application of the proposed 
method to a charge curve using the same protocol employed during 
degradation experiments to confirm its feasibility with respect to actual 
applications. It is possible to infuse empirical knowledge into model 
construction to optimize the model and, therefore, reduce the related 
uncertainty. This aspect should be investigated further. Moreover, the 
focus will be directed toward validating the proposed framework using a 
more accurate dataset that reflects the dynamic charge–discharge pro
cess, despite the long period of time required for data acquisition.  
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Appendix A. Battery modeling governing equations 

The following four governing equations model how a lithium-ion battery works. 

σ ∂2∅
∂x2 = asj, (A1)  

ρCp
∂T
∂t

+
∂
∂t

(

− λ
∂T
∂x

)

= asj(∅s − ∅e − U)+ asjT
∂U
∂T

+
j2Rf

as
, (A2)  

j = j0[exp
(

αanF
RT

η
)

− exp(
− αcnF

RT
η)], (A3)  

∂C
∂t

=
∂
∂x

(D
∂C
∂x

), (A4) 

Equation (A1) is the Ohm’s law, where σ, ∅, as, and j denote electric conductivity, potential, specific surface area, and current density, respectively. 
This law describes the amount of charge in electrodes and electrolyte. Equation (A2) is the energy balance equation, where ρ, Cp, T, λ, U, and Rf denote 
the density of solid particle, heat capacity, temperature, heat conductivity, equilibrium potential, and contact resistance. This equation describes the 
energy balance in the battery system. Equation (A3) is Butler-Volmer equation, where j0, αa, n, F, R, and η denote exchange current density, transfer 
coefficient, the number of electrons, Faraday constant, gas constant, and overpotential. It describes the relationship between the potential and current. 
Equation (A4) is Fick’s law, where C and D denote concentration and diffusivity coefficient. This law describes how ions diffuse across different 
materials. 

Appendix B. Proof of concept 

Assume a constant current mode, 

ΔSOC =

∫ t2

t1
Idt = I(t2 − t1) ≅ Δt (B1) 

Table 9 
Summary of remaining useful life estimation using several deep learning models. Optimal scores are shown in bold font.    

KIRNN-MC KIRNN CDRNN-MC CDRNN LSTM CNN MLP 

Validation set MAE (cycle)  24.8  24.1  24.4  33.7  26.8  25.0  28.0 
RMSE (cycle)  42.9  47.0  45.4  60.3  44.1  47.3  45.5 

Test set MAE (cycle)  19.9  20.6  36.8  46.6  35.2  40.5  49.8 
RMSE (cycle)  38.6  39.9  53.6  68.6  53.5  60.9  70.7  
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R =
ΔV
ΔI

≅
ΔV

ΔSOC
=

ΔV
∫ t2

t1
Idt

=
ΔV
Δt

(B2)  

∴R =
ΔV
Δt

≈
dV
dt

(Slope) (B3) 

In the above formulae, ΔSOC,R,V, I, and t denote the change of battery capacity, resistance, voltage, current, and time, respectively. To elaborate, 
according to Ohm’s law, R = ΔV/ΔI. With regards to ΔI, it is directly proportional to ΔSOC because SOC or capacity equals to the area under the 
current over time according to the Coulomb counting method. It should be noted that ΔI can just be represented as I or Δt (for the above case) since it is 
operating under a constant current mode. 

Appendix C. Layer-wise relevance propagation 

A simple LRP assumption is that every input neuron contributes to the output, and such relevance to the output is preserved for every layer. 
Mathematically, the contribution amount of each input to the output f(x) can be computed as the partial derivative of the output with respect to the 
input, that is, xp: ∂f

∂x1
,

∂f
∂x2

,..,
∂f

∂xp
. Given that a neural network is a universal function approximator, the output can be represented by the first-order Taylor 

series, as follows: 

f (x) = f (a)+
∑d

p=1

∂f
∂xp

|x=a(x − a)+ ∊, (C1) 

where a is a real value and ∊ is an error term for the higher-order polynomial terms of the Taylor series. The second term on the right-hand side of 
the equation indicates the change in f(x) according to the variations in xp. Equation (12C1) enables the decomposition of the output into the relevance 
score. However, terms a and ∊ should be resolved. To overcome this challenge, Montavon et al. [88] proved that ∊ = 0 when ReLU activation functions 
are used for neural networks and that numerous a values satisfy f(a) = 0. Therefore, Equation (C1) can be reformulated in the context of a neural 
network, as follows: 

f (x) = f (a) +
∑d

p=1

∂f
∂xp

|x=a(x − a) + ∊

=
∑d

p=1

∂f
∂xp

|x=a(x − a)

=
∑d

p=1
wpxp + b

=
∑d

p=1
Rp,

(C2) 

where wp and b are the weights and bias, and Rp is the relevance score. According to the above equation, the following condition is true for any two 
consecutive layers in a DNN: 

∑
iRi =

∑
jRj = f(x). This is equivalent to a conservation property, where the data received by a neuron is redistributed 

to the lower layer in an equal amount. In a neural network, the relevance score propagates backward based on the trained weights and bias, and it is 
calculated as follows: 

R(l)
i =

∑

j

a(l)
i w(l)

ij
∑

ia
(l)
i w(l)

ij

R(l+1)
j , (C3) 

where a(l)
i and w(l)

ij are neuron activations and weights connecting Neuron i to Neuron j, respectively, at the l-th layer. The objective of the weighted 
sum in the denominator is to ensure that the values are normalized to establish the conservation property. In this study, the LRP was applied to the 
data-driven block, shown in Fig. 4, for every training epoch to track the evolution of the feature importance with respect to the number of cycles. 

Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.apenergy.2022.119011. 
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aging of commercial LiFePO4| Graphite cylindrical cells including a theory 
explaining rise of capacity during aging. J Power Sources 2017;345:254–63. 

[54] A. Dourado and F. A. Viana, “Physics-informed neural networks for corrosion- 
fatigue prognosis,” in Proceedings of the Annual Conference of the PHM Society, 2019, 
vol. 11, no. 1. 

[55] Nascimento RG, Viana FA. Cumulative damage modeling with recurrent neural 
networks. AIAA Journal 2020;58(12):5459–71. 

[56] Nascimento RG, Viana FA. Fleet prognosis with physics-informed recurrent neural 
networks. arXiv preprint arXiv:1901.05512. 2019. 

[57] M. A. Chao, C. Kulkarni, K. Goebel, and O. Fink, “Fusing physics-based and deep 
learning models for prognostics,” arXiv preprint arXiv:2003.00732, 2020. 

[58] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear 
partial differential equations. J Comput Phys 2019;378:686–707. 

[59] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learning 
(part i): Data-driven solutions of nonlinear partial differential equations,” arXiv 
preprint arXiv:1711.10561, 2017. 

[60] Yang L, Zhang D, Karniadakis GE. Physics-informed generative adversarial 
networks for stochastic differential equations. arXiv preprint arXiv:1811.02033. 
2018. 

[61] Kim SW, Kim I, Lee J, Lee S. Knowledge Integration into deep learning in 
dynamical systems: an overview and taxonomy. J Mech Sci Technol 2021:1–12. 

[62] M. Diligenti, S. Roychowdhury, and M. Gori, “Integrating prior knowledge into 
deep learning,” in 2017 16th IEEE International Conference on Machine Learning and 
Applications (ICMLA), 2017: IEEE, pp. 920-923. 

[63] Dourado AD, Viana F. Physics-informed neural networks for bias compensation in 
corrosion-fatigue. In: in AIAA Scitech 2020 Forum; 2020. p. 1149. 

[64] He W, Williard N, Osterman M, Pecht M. Prognostics of lithium-ion batteries based 
on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sources 
2011;196(23):10314–21. 

[65] Laadissi E, Anas E, Zazi M, Jaouad K. Parameter identification of a lithium-ion 
battery model using Levenberg-Marquardt algorithm. J Eng Appl Sci 2019;14: 
1267–73. 

[66] Neal RM. Bayesian learning for neural networks. Springer Science & Business 
Media; 2012. 

[67] A. Graves, “Practical variational inference for neural networks,” in Advances in 
neural information processing systems, 2011: Citeseer, pp. 2348-2356. 

[68] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint 
arXiv:1312.6114, 2013. 

[69] Ghahramani Z. Probabilistic machine learning and artificial intelligence. Nature 
2015;521(7553):452–9. 

[70] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing 
model uncertainty in deep learning,” in international conference on machine learning, 
2016: PMLR, pp. 1050-1059. 

[71] Roman D, Saxena S, Robu V, Pecht M, Flynn D. “Machine learning pipeline for 
battery state-of-health estimation,” Nature. Machine Intelligence 2021;3(5): 
447–56. 

[72] Tang X, Liu K, Li K, Widanage WD, Kendrick E, Gao F. Recovering large-scale 
battery aging dataset with machine learning. Patterns 2021;2(8):100302. 

[73] MacKay DJ. A practical Bayesian framework for backpropagation networks. Neural 
Comput 1992;4(3):448–72. 

[74] Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine 
learning algorithms. arXiv preprint arXiv:1206.2944. 2012. 

[75] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint arXiv: 
1807.02811, 2018. 

S.W. Kim et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0306-2619(22)00419-6/h0065
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0065
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0065
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0070
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0070
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0070
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0080
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0080
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0080
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0085
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0085
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0085
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0090
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0090
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0090
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0095
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0095
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0100
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0100
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0100
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0105
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0105
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0105
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0110
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0110
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0110
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0115
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0115
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0115
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0125
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0125
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0125
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0130
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0130
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0130
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0140
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0140
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0150
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0150
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0150
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0155
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0155
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0155
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0160
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0160
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0165
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0165
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0165
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0175
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0175
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0175
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0180
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0180
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0180
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0185
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0185
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0185
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0190
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0190
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0195
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0195
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0195
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0200
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0200
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0205
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0205
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0205
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0210
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0210
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0215
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0215
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0220
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0220
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0220
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0225
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0225
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0225
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0230
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0230
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0230
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0230
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0230
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0235
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0235
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0235
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0240
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0240
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0250
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0250
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0250
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0255
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0255
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0260
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0260
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0260
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0265
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0265
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0265
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0275
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0275
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0280
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0280
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0290
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0290
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0290
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0300
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0300
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0300
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0305
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0305
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0315
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0315
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0320
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0320
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0320
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0325
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0325
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0325
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0330
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0330
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0345
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0345
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0355
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0355
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0355
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0360
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0360
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0365
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0365
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0370
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0370


Applied Energy 315 (2022) 119011

19

[76] Binder A, Bach S, Montavon G, Müller K-R, Samek W. “Layer-wise relevance 
propagation for deep neural network architectures,” in Information science and 
applications (ICISA). Springer 2016;2016:913–22. 

[77] May RJ, Maier HR, Dandy GC, Fernando TG. Non-linear variable selection for 
artificial neural networks using partial mutual information. Environ Modell 
Software 2008;23(10–11):1312–26. 

[78] R. Seoh, “Qualitative analysis of monte carlo dropout,” arXiv preprint arXiv: 
2007.01720, 2020. 

[79] Zhang J, Wang Z, Liu P, Zhang Z. Energy consumption analysis and prediction of 
electric vehicles based on real-world driving data. Appl Energy 2020;275:115408. 

[80] Li Yi, Zou C, Berecibar M, Nanini-Maury E, Chan J-W, van den Bossche P, et al. 
Random forest regression for online capacity estimation of lithium-ion batteries. 
Appl Energy 2018;232:197–210. 

[81] F. O. Heimes, “Recurrent neural networks for remaining useful life estimation,” in 
2008 international conference on prognostics and health management, 2008: IEEE, pp. 
1-6. 

[82] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-term memory network 
for remaining useful life estimation,” in 2017 IEEE international conference on 
prognostics and health management (ICPHM), 2017: IEEE, pp. 88-95. 

[83] Q. Wang, S. Zheng, A. Farahat, S. Serita, and C. Gupta, “Remaining useful life 
estimation using functional data analysis,” in 2019 ieee international conference on 
prognostics and health management (icphm), 2019: IEEE, pp. 1-8. 

[84] Tang X, Zou C, Yao K, Lu J, Xia Y, Gao F. Aging trajectory prediction for lithium-ion 
batteries via model migration and Bayesian Monte Carlo method. Appl Energy 
2019;254:113591. 

[85] Tang X, Liu K, Wang X, Gao F, Macro J, Widanage WD. Model migration neural 
network for predicting battery aging trajectories. IEEE Trans Transp Electrif 2020;6 
(2):363–74. 

[86] Liu K, Tang X, Teodorescu R, Gao F, Meng J. Future ageing trajectory prediction for 
lithium-ion battery considering the knee point effect. IEEE Trans Energy Convers 
2021. 

[87] Satopaa V, Albrecht J, Irwin D, Raghavan B. In: IEEE; 2011. p. 166–71. 
[88] Montavon G, Lapuschkin S, Binder A, Samek W, Müller K-R. Explaining nonlinear 

classification decisions with deep taylor decomposition. Pattern Recogn 2017;65: 
211–22. 

S.W. Kim et al.                                                                                                                                                                                                                                  

View publication statsView publication stats

http://refhub.elsevier.com/S0306-2619(22)00419-6/h0380
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0380
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0380
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0385
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0385
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0385
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0395
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0395
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0400
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0400
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0400
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0420
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0420
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0420
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0425
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0425
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0425
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0430
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0430
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0430
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0435
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0440
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0440
http://refhub.elsevier.com/S0306-2619(22)00419-6/h0440
https://www.researchgate.net/publication/359969178

	Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries
	1 Introduction
	2 Methodology
	2.1 Phase A: Impedance-related feature extraction and data processing
	2.2 Phase B: Knowledge-infused recurrent neural network (KIRNN)
	2.3 Phase C: Monte Carlo dropout

	3 Experimental procedure
	3.1 Capacity fade data 1
	3.2 Capacity fade data 2
	3.3 Construction of deep neural networks

	4 Results and discussion
	4.1 Contribution of impedance-related features
	4.2 KIRNN implementation
	4.3 MC dropout implementation
	4.4 Discussions on the proposed method
	4.5 Electric vehicle applications
	4.5.1 Scenario for on-board SOH monitoring
	4.5.2 On-board RUL monitoring


	5 Conclusions
	undefined
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgement
	Appendix A Battery modeling governing equations
	Appendix B Proof of concept
	Appendix C Layer-wise relevance propagation
	Supplementary material
	References


